
2D Fluid Dynamics with the Lattice Boltzmann

method

Peter-Jan Gootzen (13837478) Ruben Stap (11269146)

April 2021

1

Contents

1 Introduction 4

2 Lattice Boltzmann Algorithm 4
2.1 The DS2Q9 lattice . 4
2.2 Probability of vi . 4
2.3 A state update . 5

2.3.1 Stream . 5
2.3.2 Bounceback . 5
2.3.3 Collide . 6
2.3.4 Steady flow . 7

3 C reference implementation 8
3.1 Data layout . 8
3.2 Validation . 8

4 Research question & experimental setup 9
4.1 Inputs & parameters . 9
4.2 Performance metrics . 10

5 Reference performance analysis 11
5.1 Reference implementation Analytical model 11

5.1.1 Stream kernel . 11
5.1.2 Bounce back kernel . 12
5.1.3 Collide kernel . 13
5.1.4 Steady flow . 14
5.1.5 Complete model . 14
5.1.6 Calibration . 14
5.1.7 Verification . 15

5.2 Kernel profiling . 16

6 Performance improvement iterations 17
6.1 Vectorization of the collide kernel 17

6.1.1 Speedup prediction with vectorized collide kernel 18
6.1.2 Implementation of vectorized collide kernel 21
6.1.3 Benchmarking vectorized collide kernel 21
6.1.4 Performance analysis vectorized collide kernel 23

6.2 Improvement upon the vectorized collide kernel 23
6.2.1 Benchmarking of the improved vectorized collide kernel . 23
6.2.2 Performance analysis improved vectorization 24

6.3 Parallelization of the collide kernel 25
6.3.1 Speedup prediction with parallel collide kernel 25
6.3.2 Implementation of the parallel collide kernel 27
6.3.3 Benchmarking the parallel collide kernel 27
6.3.4 Performance analysis of the parallel collide kernel 28

2

7 Conclusion 29
7.1 Lessons learned . 30
7.2 Future work . 30

8 Appendix 31
8.1 Barrier lattice cell ratio’s for line/medium/dense 31
8.2 Analytical model reference implementation 31
8.3 Parallel roofline prediction models 33

3

1 Introduction

This report describes the optimization of a C-based 2D fluid dynamics simula-
tion. The Lattice Boltzmann method is used in this simulation. This method
can be used to simulate e.g. arterial flow and particle suspensions of which the
latter often occurs in cosmetics [1]. Note that there are many different fluid
simulation methods each with their own strengths and weaknesses [3]. This im-
plies that the Lattice Boltzmann method is not always a suitable choice. Apart
from the mentioned applications, the method has also been used in other fields
such as quantum mechanics and image processing [3].

The starting point of this project was the course material from the Physics
3300 course at Weber State University, Utah U.S.A[4]. This course provides a
introduction to the Lattice Boltzmann method and a Python reference imple-
mentation. Our initial (sequential) reference implementation is a quite literal
one-to-one port of this Python reference implementation.

2 Lattice Boltzmann Algorithm

In this section the Lattice Boltzmann algorithm will be explained using the
course from Weber as reference material[4]. The reader should be alert of pos-
sible mistakes due to the fact that the authors are not experts in physics.

Given the state of a fluid at time t, this algorithm determines the state of
the fluid at t+ ∆t. A fluid is represented as a collection of molecules which can
move across a lattice. Before discussing how the algorithm calculates a state
update some prerequisites will be discussed.

2.1 The DS2Q9 lattice

The choice was made to use a so-called D2Q9 lattice. This lattice type is
visualized in Figure 1. As can be seen in this figure, this lattice can only be
used to represent a 2D fluid. Molecules can reside in the different square lattice
cells each of which have area A = (∆x)2. Movement of these molecules between
the cells is restricted to the nine vectors ~ei. Note that this movement is in terms
of a 2D cell index. The possible displacement vectors ~di and velocity vectors ~vi
are defined as ~ei∆x and ~vi(∆x/∆t) respectively.

2.2 Probability of vi

P(~u, ~vi) = wi

(
1 +

3~ei · ~u
c

+
9

2

(
~ei · ~u
c
− 3

2

~u · ~u
c2

))
(1)

where w0 =
4

9
, w1 = w2 = w3 = w4 =

1

9
, w5 = w6 = w7 = w8 =

1

36
(2)

Equation 1 is a critical component of this algorithm. If the molecules within a
lattice cell have a macroscopic velocity ~u this equation indicates the probability

4

Figure 1: Visualization of the DSQ9 grid.

that these molecules will have velocity vi after reaching thermal equilibrium.
The variable c is defined as ∆x/∆t which is the constant speed with which
molecules move across between lattice cells.

2.3 A state update

Assume that there is a fluid state for which we want to determine the next
state. A fluid state consists of 9 directional number densities ni for each lattice
cell. Each directional number density ni can be seen as the ratio Ni/A where
Ni is the amount of molecules with velocity vi. Figure 5 visualizes the number
densities that are saved for a lattice cell.

2.3.1 Stream

In the first step of a state update all number densities of each cell are moved to
other cells, thus streaming the lattice. This is movement visualized in figure 2
for the middle cell. For example n2, which correspond to movement in the north
direction, is moved from the middle cell to the top cell. The number density n0

stays in the middle cell as it corresponds to no movement.

2.3.2 Bounceback

In this simulation there can be boundaries in the fluid. If molecules hit these
boundaries they should bounce back, i.e. have their velocity reversed (·− 1). In
the previous step it could be the case that molecules moved inside boundaries,
therefore in step two a bounceback is performed. To model the ”bounceback” all
number densities within boundaries are moved in the opposite direction. Figure
4 displays a column boundary and a single fluid cell on the left. In the previous
step, n5, n1 and n8 are moved within the boundary. These correspond to the
northeast, east and southeast number densities. In the final step these number
densities are moved to the northwest, west, southwest number densities.

5

Figure 2: Visualization of the movement of number densities of the middle cell
in the last step of a state update.

Figure 3: The leftmost figure indicates the action corresponding to the first
step. The middle figure indicates the fluid state as a result and the action
corresponding to the second ”bounceback” step. The rightmost figure displays
the result of this step.

Figure 4: Left: stream into object grid points. Middle: the molecules are
”bounced back”. Right: result of the bounceback step.

2.3.3 Collide

The following four steps are together called the collide part of the Lattice Boltz-
mann algorithm.

The third step in the algorithm is to determine the total number density ρ
for each cell. For each cell this is the sum of each ”directional” number density.

The fourth step of the algorithm is to determine the velocity of each cell.
The horizontal component ux and the vertical component uy are determined
according to equations 3 and 4. Both values are restricted to the range [−1, 1].

6

Figure 5: Visualization of the 9 number densities that are saved for each lattice
cell. A green/blue background color indicates a low value while a red background
value indicates a high value.

Figure 5 visualizes the number densities that are saved for a lattice cell. The
value of ux is positive if the majority of the density in n6, n3, n7, n5, n1 and n8

is located on the right. The value of uy is also positive if the majority of the
total density in n6, n2, n5, n7, n4 and n8 is located on the top. Both quantities
are negative in the inverse case. In the figure ux > 0 and uy < 0.

ux = (n5 + n1 + n8 − n6 − n3 − n7)/ρ (3)

uy = (n6 + n2 + n5 − n7 − n4 − n8)/ρ (4)

In the fifth step the algorithm determines, for each cell, the 9 number densities
when thermal equilibrium has been reached. For each cell a value of neqi can
be determined by calculating P(~u, ~vi)ρ. This expression calculates the expected
number density of molecules that have velocity vi after reaching thermal equi-
librium. Because there might not be a thermal equilibrium in a cell due to the
fact that the molecules in this cell have ”just arrived” in the streaming step.

The sixth step of the algorithm is to update the 9 number densities of each
cell based on equation 5. In this equation the constant ω ∈ [0, 2] and is inversely
related to the viscosity of the fluid. The viscosity can be seen as the thickness
of a fluid.

nnewi = (1− ω)noldi + ωneqi (5)

2.3.4 Steady flow

The seventh and last step is to reintroduce a flow into the lattice with a certain
configuration. This is to make sure that the steady flow that one wants to sim-
ulate is an invariant. If this step were to be omitted, the fluid would eventually
come to a stand-still.

A good real-life example of this is a wind tunnel or a water stream. This
step simply inserts certain values of density into the lattice at given positions for
certain directions, for example on the left side of the lattice with higher densities
in the east sided directions than in the west sided directions, thus creating a

7

rightward flow. The exact number densities which are to be inserted can be
generated by setting the desired ~u and ρ and then determening the values of
neqi = P(~u, vi)ρ.

3 C reference implementation

As previously mentioned, the reference implementation is a quite literal port
of the Python implementation from the reference material[4] to C. This imple-
mentation consists of four kernels: stream, bounceback, collide and steady flow,
that correspond to the steps in 2.3. The program is ran for a certain amount
of iterations in which all four kernels are invoked. For each grid point all those
invocations correspond to a state update as has been described in Section 2.3.
These four kernels will be further expanded upon in the analytical model of the
reference implementation in Section 5.1. The data layout and our validation
procedure will be further expanded upon in the subsequent sections.

3.1 Data layout

As explained in Section 2.1, the algorithm uses a 2D grid where each grid point
has 9 separate values representing the molecule density. In the reference im-
plementation this is laid in memory as: float (*grid)[9][H][W], this being
a row-major 3-dimensional array where the first axis represents the direction,
the second axis (with length H) represents the y-coordinate and the third and
last axis (with length W) represents the x-coordinate. In this report the term
grid size will be used to refer to H ×W , as this is the configurable part of the
effective grid size.

The second piece of interest is the way objects are encoded in memory. Any
grid point (y, x) can either contain an object or not. Therefore this can be
simply laid out in memory as follows: bool (*object_grid)[H][W], this being
a row-major two-dimensional array of size H×W where each boolean represents
whether there is an object on the corresponding (y, x).

3.2 Validation

The reference implementation and all subsequent implementations are verified
to ensure that no changes inadvertently altered the correctness of the imple-
mentation. Initially it was planned to use the Python implementation as the
baseline ”correct” implementation to compare against. However while porting
the bounceback phase of the algorithm a mistake was noticed in the Python
implementation. Having confidently concluded that this was the only difference
in the output of both implementations, we opted to fixing this mistake in our
implementation and taking our implementation as the ”correct” baseline point
for validation.

Verification of an implementation is done by comparing the minimum, max-
imum and average of each number density array and velocity arrays to the

8

corresponding values of the C reference implementation after every iteration.
As all these values are floating-point numbers, the precision of the data type is
taken into a account and only differences that are not caused by floating-point
imprecision are seen as incorrect.

4 Research question & experimental setup

To performance engineer an application, a research question and goal has to be
defined to form the base for the experimental setup, models and optimizations.
During this project a single time-step of the simulation will be optimized. Hop-
ing to achieve (atleast) real-time fluid dynamics simulation for high-resolution
grid sizes (i.e. ≥ 1080p). Leading to the following formulation of the research
question:

How fast can a single time-step in the 2D fluid dynamics simulation
be performed?

Our experimental setup consists of the various parameters that are given to
the implementations and the various performance metrics that are optimized
for and evaluated upon. All experimentation, analysis and benchmarking is
performed with the DAS-5 using the Intel Haswell microarchitecture.

4.1 Inputs & parameters

Inspecting the reference implementation, the following inputs can be defined:

1. the size of the density matrix, defined as H ×W

2. the initial values in the H ×W density matrix

3. grid points on which object boundaries lie (i.e. amount and location)

4. the steady flow configuration, i.e. where and how much density is spawned
in every iteration

These inputs are abstracted away from the reference implementation described
in 3, as their definition will have to stay consistent across all implementations
that might alter data layouts.

Not all these inputs will be defined as parameters to our experimental setup
however. The second input, which does not affect performance in any way will
not be used as a parameter. Because it only alters the values in the calcula-
tions and data movements, not the amount of computations, making it a poor
choice for a parameter. The fourth input (steady flow configuration) does af-
fect performance as it must include a certain amount of stores to the density
matrix. However it would not be an interesting parameter to analyze as it is
quite simplistic, so this input will not be included as a parameter to limit scope.
Therefore we will fix the initial values and fix the steady flow configuration to
a rightward steady flow.

9

Figure 6: The three object boundaries parameters visualized. From left to right:
the line object, the medium object density and the dense object density

That leaves inputs 1 and 3 as interesting inputs to use as parameters for our
experimental setup.

The H×W parameter will be used in the experimental setup with the values
H×W = {80× 200, 1080× 1920, 3840× 2160} as these large grid sizes resemble
our goal of being able to simulate in real-time for modern high resolutions and
the small grid size is chosen to analyze any special caching behavior with small
grids.

The object boundaries parameter will have three different values, see Figure
6. The first is a simple vertical line with lH = H · 25 centered at H/2 in the y-axis
and H/2 in the x-axis. The second and third possible values of this parameter
are similar but differ in their level of intensity. The second value is what we
call ”medium” object density and the third ”dense” object density. For each of
these densities the ratio of barriers with respect to lattice cells is dependent on
the grid dimensions and is given by Equations 20, 21 and 22 which are included
in the appendix. The values of these ratio’s for the grid sizes in our input space
are shown in Table 1.

HxW → 80x200 1080x1920 3840x2160
ratline 2 · 10−3 2.083 · 10−4 1.852 · 10−4

ratmed 6.75 · 10−2 7.057 · 10−2 7.076 · 10−2

ratdense 2.175 · 10−1 2.578 · 10−1 2.583 · 10−1

Table 1: Displays the value of Equation 20, 21 and 22 rounded to three signifi-
cant digits for each of the grid dimensions in the chosen input space.

Lastly we will run all benchmarks and analyses on a single DAS-5 node that
has two Intel Xeon E5-2630 v3 CPU’s, with combined 16 cores, 32 hardware
threads, 32KB L1 cache per core, 256KB L2 cache per core and 20MB L3 cache
per CPU.

4.2 Performance metrics

Looking at the chosen research question, it includes a performance metric itself,
namely the time it takes to compute a single time-step (i.e. frame) Tframe.

Even though this single metric would suffice to answer the research question,

10

several other metrics will be monitored during the performance engineering. In
section 2 and 3 it is laid out that the simulation consists of four kernels that
are executed each iteration and together produce a single next frame. Each of
these kernels can be measured in terms of their latency:

• the streaming of densities - Tstream

• bouncing back densities on object boundaries - Tbounceback

• letting densities collide - Tcollide

• the spawning of steady flow - Tsteadyflow

With these four kernel latencies Tframe can be decomposed as follows:

Tframe = Tstream + Tbounceback + Tcollide + Tsteadyflow

The last performance metric to be measured is GFLOP/s, which is computed
by dividing the total amount of floating point operations performed by the total
amount of time passed thus far.

These six metrics will be used to evaluate and analyze the various imple-
mentations with the parameters defined in section 4.1.

5 Reference performance analysis

5.1 Reference implementation Analytical model

In order to gain insight in the bottlenecks of the reference implementation for
the previously defined input space, which is to be used in the first performance
improvement iteration, an analytical model will be created which predicts Tframe.

As has been explained before, a single state update can be split in a stream,
bounceback, collide and a steady flow step. A full model will be formulated for
each kernel. Each of those models will finally be substituted in Equation 6 to
yield a model for a state update.

Tframe(W,H,Fbranch) =Tstream(W,H) + Tbounceback(H,W,Fbranch)+

Tcollide(W,H) + Tsteadyflow(H) (6)

5.1.1 Stream kernel

In the stream kernel, number density matrices are shifted row-wise or column-
wise using the roll function. This function can be invoked to shift a matrix one
row down, one row up, one column to the left or one column to the right. Each
of the 8 directions are rolled into their corresponding direction (with north-east,
north-west, south-west and south-east being rolled once for each component).
This leads to each roll direction case to be executed three times per invocation
of the stream function. To determine a model for the stream kernel a model
will therefore be formulated for each case of the roll function.

11

1 memcpy(&buf, &(*A)[H-1][0], W * sizeof(float));

2 for (int y = H - 2; y >= 0; y--)

3 memcpy(&(*A)[y+1][0], &(*A)[y][0], W * sizeof(float));

4 memcpy(&(*A)[0][0], &buf, W * sizeof(float));

Listing 1: The code of the roll function which shifts a matrix one row down
with a wrap around.

Listing 1 is shown for the first case of the roll function. As can be seen, there
are 2 memcopies of W floats outside the loop and H − 1 of such memcopies
inside the loop. The time for this case thus equals (H + 2) ·W · sizeof(float) ·
Trollrow,bytecpy. The latency of the second case of the roll function, which shifts
a matrix one row upwards, can be described by same expression.

1 for (size_t y = 0; y < H; y++) {

2 float first = (*A)[y][0];

3 for (size_t x = 0; x < W - 1; x++)

4 (*A)[y][x] = (*A)[y][x+1];

5 (*A)[y][W-1] = first;

6 }

Listing 2: The code of the roll function which shifts a matrix one column to the
left with a wrap around.

Listing 2 displays the roll function for the third case. When neglecting
the two statements around the inner for-loop, the latency of this case can be
described as (H − 1) · (W − 2) · Trollcol,loopit where Trollcol,loopit is defined as the
time for an inner for-loop iteration. This omission can be justified by observing
that the ratio of the amount of these statements with respect to the amount of

inner loop iterations (H−1)·2
(H−1)(W−2) = 2

W−2 tends to zero quickly when the grid

width increases. The latency of the final case of the roll function, which shifts
a matrix one column to the right, can also be described using this expression.

The stream function as a whole can thus be modeled with equation 7 with
the grid width (W) and height (H) as parameter.

Tstream(W,H) =6 · (H + 2) ·W · sizeof(float) · Trollrow,bytecpy+

6 · (H − 1) · (W − 2) · Trollcol,loopit (7)

5.1.2 Bounce back kernel

The bounceback kernel bounces any molecules that were ”rolled” into an object
back into the opposite direction. For each kernel invocation every grid point
(y, x) in object_grid is checked for whether there is an object (y, x). If this is
the case all densities in a certain direction are set into the density of the next

12

cell in the corresponding opposite direction. In Listing 3 a section of this code
is shown.

1 for (unsigned y = 0; y < H; y++) {

2 for (unsigned x = 0; x < W; x++) {

3 if ((*object_grid)[y][x]) {

4 (*grid)[EAST][y][x+1] = (*grid)[WEST][y][x];

5 (*grid)[WEST][y][x-1] = (*grid)[EAST][y][x];

6 // 6 similar statements...

7 }

8 }

9 }

Listing 3: The code of the bounceback function.

As can be seen in listing 3, there are H ·W inner loop iterations. Each inner
loop iteration contains a condition that is true when the corresponding cell is
a barrier. If this is the case 8 memory statements are performed. The model
of this function characterizes an inner loop iteration with it’s average latency.
This is an average of the time required to execute a inner loop iteration if the
branch is true Tbounce,mem and the time if this is not the case Tbounce,cond. The
average is weighted with the branch condition Fbounce,branch which is equal to
the ratio of barrier to lattice cells. The total latency of the bounceback function
can be modelled with Equation 8 with parameters W , H, Fbounce,branch and to
be calibrated values of Tbounce,mem and Tbounce,cond.

Tbounceback(H,W,Fbounce,branch) = H ·W · (Fbounce,branch · Tbounce,mem+

(1− Fbounce,branch) · Tbounce,cond)
(8)

5.1.3 Collide kernel

The collide kernel executes the computations from 2.3.3 for each grid point (y, x)
and ni. As many values from these computations can be reused within the same
computations of all directions in a single grid point, the kernel loops over the
grid points and then computes all the new densities for each direction. The
reference implementation does not go any further in optimizing these computa-
tions than this simple reusal within the directions of a grid point. It performs
126 FLOPs per grid point, loads from 86 variables and stores into 20 variables.
These numbers are calculated from the code, thus are logical FLOPs, loads and
stores, not actual numbers taken from the assembly (as the compiler might have
optimized away some).

The model for this kernel is formulated by Equation 9, where Tcollide,(x,y) is
the latency of all the operations needed to update a single grid point.

Tcollide(H,W) = H ·W · Tcollide,(y,x) (9)

13

5.1.4 Steady flow

The fourth and last kernel of the simulation is the steady flow kernel. This kernel
makes sure that there always exists a steady flow of fluid in the simulation. At
the left most column high amounts of fluids are introduced in the east directions
and low amounts in the west directions, thus creating a flow from the left to the
right (as was chosen in Section 4.1).

1 // force_flows contains high amounts of molecules on

2 // the eastern directions and low amounts on the western directions

3 for (y = 0; y < H; y++) {

4 for (direction in (EAST, WEST, NORTH_EAST, SOUTH_EAST,

5 NORTH_WEST, SOUTH_WEST)) {

6 (*grid)[direction][y][0] = force_flows[direction];

7 }

8 }

Listing 4: Pseudo-code of the steady flow kernel

In Listing 4 pseudocode is shown of the kernel. As one can see the complexity
of this kernel scales with the H term, thus we formulate this kernel in our
analytical model as is stated in Equation 10.

Tsteadyflow(H) = H · Tsteadyflow,y (10)

5.1.5 Complete model

The complete analytical model of our simulation combines all the terms from
our four kernels to find the total latency to compute a single frame, shown in
Equation 11.

Tframe(W,H,Fbounce,branch) = (6 · (H + 2) ·W · sizeof(float) · Trollrow,bytecpy + 6 · (H − 1) · (W − 2) · Trollcol,loopit)+

(H ·W · (Fbounce,branch · Tbounce,mem + (1− Fbounce,branch) · Tbounce,cond))+

(H ·W · Tcollide,(y,x))+

H · Tsteadyflow,y (11)

5.1.6 Calibration

The to-be-calibrated parameters of the stream, bounce and collide kernels will be
determined by running the reference implementation for the 1080× 1920 lattice
with a medium amount of barriers and 13000 iterations. More specifically,
to calibrate the stream kernel parameters Trollcol,loopit and Trollrow,bytecpy, the
average time of these two groups of invocations will be determined. Division
by the corresponding prefixes in Equation 7 will then yield the values of these
parameters.

14

A similar process is used to determine the parameters of the collide and
the steady flow kernel. First of all the average latency of each kernel is de-
termined. Subsequently each average is divided by the corresponding prefix in
either Equation 9 or Equation 10.

To determine the parameters of the bounceback kernel, timers could be
placed within the loop in Listing 3. This is not desirable because this would
interfere with the ILP within the loop. Another method is therefore pursued
which first measures the average latency of this kernel with the same inputs
as before. Subsequently the average latency is measured for the same param-
eters but with a high amount of barriers. If these latencies are denoted with
Tavg,medium and Tavg,high, these times are related to the to-be-determined pa-
rameters by Equations 12 and 13.

Tavg, medium = Tbounceback(H,W,Fbounce,branch) (12)

Tavg, dense = Tbounceback(H,W,Fbounce,branch) (13)

Setting H = 1080, W = 1920 in both equations, Fbounce,branch = 7.057 · 10−2

in Equation 12 and Fbounce,branch = 0.26 in Equation 13 (from Table 1) will
then yield Equations 14 and 15 after simplification. As this is a system of two
equations and two unknowns the desired Tbounce,mem and Tbounce,cond can be
determined.

Tavg,medium = 2073600(0.07057 · Tbounce,mem + 0.92943 · Tbounce,cond) (14)

Tavg,dens = 2073600(0.2578 · Tbounce,mem + 0.7422 · Tbounce,cond) (15)

5.1.7 Verification

The previously described calibration resulted in values that can be found in
Table 15 in the Appendix. To determine the accuracy of the model predictions
Table 2 was generated which displays the ratio between the predicted Tframe

and an measured average Tframe. As can be seen in this table the model almost
yields a perfect prediction for the grid size with which calibration took place.
For the smallest grid there is an overestimation of Tframe by ≈ 50% while there
is an underestimation of ≈ 10% for the biggest grid. It was hypothesized that
this is caused by a changing memory access time due to better or worse caching
behavior.

Line Medium Dense
80x200 1.46 1.45 1.52
1080x1920 1 0.99 0.98
3840x2160 0.91 0.91 0.92

Table 2: The ratio [Predicted Tframe latency] / [Measured Tframe latency] for
the different gride dimensions and barrier densities that are in the chosen input
space. For the 80x200, 1080x1920 and 3840x2160 dimensions [Measured Tframe
latency] is an average over 105, 500 and 150 iterations.

15

To test this hypothesis perf was used to gather L1-dcache-loads, L1-dcache-load-misses,
LLC-loads and LLC-load-misses for each input in the input space. The amount
of L2 requests and hits could not be gathered due to unreliable HW counters
for the E5-2630V3 CPU (as can be read in the perf manual). By assuming that
RequestsL2 = MissesL1 and MissesL2 = RequestsL3, the average access time
(AAT) was determined for each input in the input space. The AAT can be
calculated according to equations 16, 17 and 18. Every hitrate was determined
from the gathered hit and miss rates while each memory load latency was ob-
tained by running lmbench. The specific values and their origin are shown in
Figure 12 which is included in the appendix.

AAT = HitrateL1 · Lathit,L1 + (1−HitrateL1)Latmiss,L1 (16)

Latmiss,L1 = HitrateL2 · Lathit,L2 + (1−HitrateL2)Latmiss,L2 (17)

Latmiss,L2 = HitrateL3 · Lathit,L3 + (1−HitrateL2)Latmiss,L3 (18)

The application of this procedure resulted in Table 3. As can be seen the AATs
of the 80× 200 grid are approximately 55% higher than that of the 1080× 1920
grid. Furthermore the AATs of the 3840 × 2160 grid are approximately 8%
lower than that of the 1080 × 1920 grid. As these differences coincide with
the deviations that have been found this makes differing cache behavior a very
plausible reason for the model inaccuracies.

Line Medium Dense
80x200 1.45 1.45 1.46
1080x1920 2.23 2.26 2.33
3840x2160 2.46 2.49 2.49

Table 3: The AAT in ns for each (grid size, barrier density) combination in the
chosen input space.

5.2 Kernel profiling

The next step that was taken to analyze the performance of the reference im-
plementation was a profiling of the four kernels, that is measuring the time
each kernel takes relative to Tframe. In Figure 7 the benchmark results for this
analysis are shown.

A few patterns appear in these results. Firstly these results show that the
steady flow kernel is almost negligible, especially for the larger resolutions. This
can be easily attributed to the fact that its complexity only scales with H, as
can be seen in the analytical model in Equation 11, thus disappearing from
the big picture when the resolution increases. Secondly it is shown that the
collide kernel takes in all configurations the most time of all kernels, by a big
margin. Thirdly the results show that the bounceback kernel increases in its
relative latency as the amount of grid points that contain an object is increased.
This is logical when looking at the model because Fbounce,branch increases which

16

causes the average inner loop latency to increase due to the fact that processing
a barrier is more time-intensive than not doing so.

Lastly the stream kernel’s relative latency appears to increase with the
increase in resolution, however the difference between the 1080 × 1920 and
2160 × 3840 resolution is quite small. This seems to indicate that at small
resolutions, this solely memory heavy kernel, seems to be relatively fast. A
possible cause of this is that small grid sizes fit better inside the cache. More
specifically, the 80 × 200 takes up 704 kb 1 and thus fits in the L3 cache while
the other grid sizes do not. The previous analysis using the AATs, which are
shown in Table 3, also strengthen this suspicion.

Figure 7: Kernel profiling of the reference implementation, showing the percent-
age of Tframe that each kernel takes up for each configuration.

6 Performance improvement iterations

6.1 Vectorization of the collide kernel

It has been noted previously that the collide kernel is dominant in Tframe.
The first performance iteration will focus on this kernel because the achiev-
able speedup of Tframe will then be maximized. Recall that the collide kernel
collides molecules after they have been moved to new positions.

From a computational perspective, the first C implementation of this kernel
can be described with the pseudocode shown in Listing 5. An inner x loop
iteration is responsible for determining the 9 different number densities per grid
point. As can be seen here, a new number density of a grid point, is only
dependent on it’s previous value and some constants.

1The 9 number density arrays as well as the rho, ux and uy array take up 11 · 80 · 200 ·
sizeof(float) · 10−6 = 0.704 MB.

17

1 for y in 0 .. H -1:

2 for x in 0 .. W - 1:

3 rho, ux, uy = 0

4 for dir in directions:

5 rho += ndens[dir][y][x]

6

7 for dirx, diry in [(EAST, NORTH,), (NORTH_EAST, NORTH_EAST), (SOUTH_EAST,NORTH_WEST)]:

8 ux += ndens[dirx][y][x] / rho

9 uy += ndens[diry][y][x] / rho

10 for dirx, diry in [(WEST, SOUTH), (NORTH_WEST, SOUTH_EAST), (SOUTH_WEST,SOUTH_WEST)]:

11 ux -= ndens[dirx][y][x] / rho

12 uy -= ndens[diry][y][x] / rho

13

14 for dir in directions:

15 temp = 4.5 * (ex[dir] * ux + ey[dir] * uy)^2 + 3*(ex[dir] * ux + ey[dir] * uy)

16 - 1.5 * (ux^2 + uy^2) + 1

17 ndens[dir][y][x] = (1 - omega) * ndens[dir][y][x] + rho * omega * w[dir] * temp

Listing 5: Highly simplified pseudocode of the collide kernel. In this pseudocode
ex and ey are defined as the x and y components of the direction vectors of the
DSQ9 grid (see Figure 1). The array w consists of constants which can be found
in Equation 2.

As a 256-bits SIMD register (maximum supported on the DAS-5) allows
8 single precision floats, it is possible to determine the number densities of
8 different grid positions simultaneously using vectorization. Even though it
could be possible that the collide kernel is memory bound, there is no clear
path towards a memory optimization because of the constraints of the Lattice
Boltzmann method. For example techniques such as cache blocking will not
yield any benefit due to the fact that there is no data reusal of number density
elements within a call of the collide kernel. Vectorization will be therefore be
the first attempted optimization regardless whether the kernel is memory bound
or compute bound.

6.1.1 Speedup prediction with vectorized collide kernel

In order to predict a performance increase for the three considered grid di-
mensions when vectorization were to-be-performed, integrated roofline models
(IRMs) were generated for the collide kernel using Intel Advisor. An IRM con-
sists of a L1, L2, L3 and DRAM AI whereby each AI is the ratio #FLOP
/ bytes. [2]Furthermore bytes refers to the traffic between that memory and
memory ”higher” in the hierarchy or the core.

As the number of operations in the collide kernel is independent of the
amount of boundaries, it is likely that an IRM will be independent of its value.
There might be an interference due to caching behavior in the stream and
bounceback kernels, but it is assumed this effect is negligible. This parame-
ter was therefore arbitrarily set to dense in the to-be-generated IRMs.

Some corrections were made to the generated IRMs using Intel Advisor.
First of all variation of peak compute and peak memory bandwidth bounds were

18

observed across various runs. This variation is to be expected because bench-
marks are used internally to determine these values. Therefore corresponding
maximum values are used (n=7).

It was also observed that for the different grid sizes, the absolute performance
of the collide kernel, reported by Intel Advisor, differ from manually obtained
values. These values were manually obtained with (91 ·H ·W)/T (H,W) where
T (H,W) is the average latency of the kernel for a certain grid size, and 91
FLOPS occur per grid point. The latter value was found by evaluating the
generated assembly code. While this initially seemed to stem from a different
T (H,W) due to overhead, a further investigation resulted in observing that Intel
Advisor also used a different FLOP count. Therefore the manual obtained values
are substituted in each IRM. As each FLOP count is also used in determining
the AIs (#FLOP / bytes), these values were corrected as well.
Figure 8 show the generated IRMs for each grid size. It can be seen that
the reference implementation’s absolute performance is consistently below the
scalar add peak. The highest roof that is reachable when vectorization were to
be performed, is indicated with a dotted line for each IRM. It can therefore be
seen that the collide kernel is eventually memory bound. More specifically, the
kernel is bound by L3 bandwidth for the 80x200 grid while it is bound by DRAM
bandwidth for the other grid sizes. This is logical because the 80x200 working
set of nine different number density arrays takes up 80·200·9·sizeof(float)·10−6 =
0.576MB, fitting fully in the 20MB L3 cache, while the bigger working sets take
up 74MB and 298MB.

It can furthermore be seen that the absolute performance of the collide ker-
nel decreases for bigger grid sizes. The absolute performance is 2.84GFLOP/s
(80x200), 1.91GFLOPS (1080x1920) and 1.69 GFLOPS (3840x2160). The de-
crease between the 80x200 and 1080x1920 grid is to be expected because of
the introduction of DRAM requests which cause slower memory access times.
Even though Table 4 shows that the DRAM AI become slightly lower between
the 1080x1920 and 3840x2160 grid the latter difference does not seem to be
fully warranted. When running likwid-perfctr on both the 1080x1920 and
3840x2160 grid size with dense boundaries and the group CYCLE_STALLS, the ex-
ecution stall rate of the collide kernel increases from 24% to 33%. In both cases,
98% of these stalls were caused by memory loads.2It therefore seems plausible
that the performance difference is caused by a lower DRAM AI.

AI→ L1 AI L2 AI L3 AI DRAM AI
80x200, dense, 7.5E4 iterations 0.555 0.946 0.951 -
1080x1920, dense, 500 iterations 0.555 0.952 0.949 0.952
3840x2160, dense, 100 iterations 0.555 0.953 0.950 0.950

Table 4: The AI values for every generated IRM displayed in figure 8.

2The collide kernel was isolated by using the Likwid Marker API.

19

Figure 8: (a),(b),(c) from left to right. Each figure is a IRM of the collide
kernel in the reference C implementation generated by Intel Advisor where the
program was ran for the denoted grid size and amount of iterations with dense
boundaries. Absolute performances of the collide kernel were manually deter-
mined and each AI was corrected with the correct FLOP count. Additionally,
memory bandwidths and peak compute bounds are maximum values (n=7).

Given these current absolute performances and the maximum achievable
performances according to the IRMs maximum speedups were calculated for
the collide kernel which are shown in table 5.

80x200 1080x1920 3840x2160
Current abs performance 2.84 GFLOP/s 1.91 GFLOPS/s 1.69 GFLOPS/s
Maximum abs performance [25.5, 37.33] GFLOPS/s 12.59 GFLOPS/s 12.57 GFLOPS/s
Maximum speedup [8.98, 13.14] × 6.61 × 7.44×

Table 5: Current and predicted maximum performance and maximum speedup.
Note that the upper bound is a range for the 80x200 grid dimensions whereby
the low end corresponds to the peak vector add performance while the high end
corresponds to L3 bounded performance when FMA units are utilized.

To determine a overall maximum speedup for Tframe, average kernel times
were obtained for all grid dimensions and barrier density combinations in the
input space with 105, 500 and 150 iterations for the 80x200, 1080x1920 and
3840x2160 grid. Given the values for a certain input parameter combination, the
maximum speedup can be calculated with (Tother +Tcollide)/(Tother +Tcollide/S)
where Tother denotes the sum of all average kernel times other than that of the
collide kernel and S refers to the corresponding collide kernel speedup shown in
Table 5. The resulting values are shown in Table 6.

20

line medium dense
80x200 5.40 5.12 4.82
1080x1920 4.20 3.97 3.55
3840x2160 4.42 4.19 3.75

Table 6: The predicted overall maximum Tframe speedup of the vectorized im-
plementation with respect to the reference implementation.

6.1.2 Implementation of vectorized collide kernel

The vectorization was implemented using Intel intrinsics provided by immintrin.h.
For vectorizing the collide kernel two options were considered: (1) vectorize over
multiple grid points and compute 8 grid points in the inner loop, or (2) vector-
ize over the many FLOPs that are needed for a single grid point and compute
multiple directions for a single grid point in the inner loop. Although the second
option sounds attractive, even with the many FLOPs needed for a single itera-
tion, there are not enough to keep the FP execution units optimally occupied.

For example the ux and uy terms from Equation 3 and 4 are needed for every
direction i in nnewi . But there is no way to fill and fully utilize the 8 FP32 wide
execution units, as with this computation the operator precedence prevents the
formulas of being split up into more than 2 FLOPs that can be executed in
parallel, thus creating a bottleneck. While with option 1, this problem does
not arise, as for 8 grid points the 8 ux’s and 8 uy’s are both computed in
parallel. The second option also has the advantage of being significantly less
complex (albeit still quite complex) as the formulas don’t have to be dissected
into parallelizable FLOPs. Therefore it was decided to vectorize over 8 grid
points in a single inner loop.

6.1.3 Benchmarking vectorized collide kernel

To evaluate the performance of the SIMD implementation, the average latency
of the collide kernel was measured for all parameters in the input space with
7.5E4 (80x200), 500 (1080x1920) and 100 (3840x2160) iterations. These values
combined with the measurements for the reference implementation result in the
speedups which are displayed in Table 7. For the 80x200 grid dimensions, the
speedup prediction is sound, as the percent error between the predicted and
realized speedup is always below 10%. For the other two grid sizes the realized
speedups exceed the predictions.

Although the maximum DRAM bandwidth was taken over various Intel
Advisor runs, large variance was observed in the values. It could therefore
be that the DRAM bandwidth, that was used in the speedup predictions, was
underestimated. If the theoretical maximum DRAM bandwidth of a single E5-
2630V3 core were used (14.928 GB/s3), the predicted maximum speedup is 7.444

31.866 · 8 = 14.928 GB/s with 1.866 GHZ as maximum memory speed and a bus width of
8 bytes.

4(0.952 · 14.928)/1.91

21

(1080x1920) and 8.39 5 (3840x2160). All realized speedups are lower than these
estimates, which indicates that this is a plausible reason for the prediction error.
The overall speedup of Tframe in the vectorized implementation with respect to
the reference implementation is at most 5.13 and at least 3.62. The percent
error of these speedups with respect to the predicted speedups (Table 5), that
were corrected for the higher DRAM bandwidths, are shown in Table 9. These
errors are small and reside between −2.68% and −5.00%.

line medium dense Predicted
80x200 8.33 8.13 8.37 ≤ ×[8.98, 13.14]
1080x1920 6.78 6.71 6.78 ≤ ×6.61
3840x2160 7.57 7.54 7.57 ≤ ×7.44

Table 7: Displays the speedup of the average Tcollide of the vectorized imple-
mentation with respect to the reference C implementation together with the
original predictions.

line medium dense
80x200 5.13 4.76 4.57
1080x1920 4.30 4.02 3.62
3840x2160 4.54 4.26 3.84

Table 8: The overall speedup of the average Tframe of the vectorized implemen-
tation with respect to the reference C implementation.

line medium dense
80x200 -5.00% -6.99% -5.20%
1080x1920 -4.27% -4.83% -3.10%
3840x2160 -3.63% -3.86% -2.68%

Table 9: Displays the percent error between the predicted and realised overall
vectorized Tframe speedup with respect to the reference implementation for each
element in the input space. Note that the predicted speedup was corrected with
the theoretical DRAM bandwidth.

5(0.950 · 14.928)/1.69

22

6.1.4 Performance analysis vectorized collide kernel

To analyze the slight discrepancy between the predicted speedup and the achieved
speedup llvm-mca was used to investigate potential bottlenecks. llvm-mca uses
a theoretical model of a given microarchitecture (Intel Haswell in our case) to
simulate the CPU with its pipeline and execution units during execution of a
certain section of assembly (the inner loop of the collide kernel in our case).

Looking at the assembly itself it can be seen that some registers are spilled
back onto the stack. This is something that the compiler inserts into the as-
sembly when there are not enough registers for the data, preventing the need
to compute the same information twice.

The bottleneck analysis simulation showed that the resources (i.e. execution
units) are in ∼ 56% of the cycles during an inner loop ”pressured”. Meaning
that atleast some slowdown occurs because operations are delaying each other
as there are not enough resources to achieve optimal floating-point execution
unit occupancy. In ∼ 70% of the cycles, data dependencies are preventing the
executions to be optimally occupied. For example the ux and uy values are
needed for all subsequent computations, but inside the ux and uy computations
data dependencies prevent reaching optimal GFLOP/s.

6.2 Improvement upon the vectorized collide kernel

The previous performance iteration showed speedups that slightly underper-
formed from the perspective of the predictions. The subsequent analysis pro-
vided a path toward improving bottlenecks in the vectorization. Therefore this
(small) performance iteration will focus on improving these bottlenecks.

As improving resource pressure is very difficult in this kernel with solely
floating-point operations, it was chosen to pursue improving data dependen-
cies, especially as this is a bigger factor than resource pressure. Iterating once
more upon vectorization is not expected to give speedups that fully align with
the predictions made with the first vectorized implementation, as some data
dependencies are inherent in the algorithm.

Firstly one of the two divisions by ρ was removed by doing one division 1
ρ

and then doing two multiplications, arriving at the same result with less latency.
By carefully examining the code and dependencies between computations, a few
more computations were able to be switched around which should result in less
data dependencies.

6.2.1 Benchmarking of the improved vectorized collide kernel

Now performing the benchmarking again we find the following results shown
in Table 10 and Table 11. These numbers show that the speedups only occur
with the small resolution with this improved version. Looking at the speedup
of a complete frame with the two larger resolutions, there is even a very slight
slowdown.

23

line medium dense
80x200 1.15 1.89 1.56
1080x1920 1.00 1.01 1.01
3840x2160 1.00 1.01 1.01

Table 10: The speedup of Tcollide of the improved vectorization implementation
with respect to the original vectorization implementation.

line medium dense
80x200 1.08 1.89 1.56
1080x1920 0.99 0.99 1.00
3840x2160 0.98 0.99 0.99

Table 11: The speedup of Tframe of the improved vectorization implementation
with respect to the original vectorization implementation.

6.2.2 Performance analysis improved vectorization

To investigate how and why the improved vectorization does not benefit the
configurations with the two larger resolutions, performance counters and llvm-
mca were used to analyze the runtime characteristics and generated assembly.

When comparing the llvm-mca bottleneck analysis of the improved vector-
ization to that of the original vectorization, the resource pressure drops from
∼ 56% to ∼ 38%. The percentage of cycles with data dependencies increases
from ∼ 70% to ∼ 75%. Especially the slight increase in the data dependencies
is interesting, as that is the area the improvement targeted. As these results
are very hard to dissect (requiring deep assembly inspection), it was chosen to
analyze through other approaches instead of dividing further into these results.

Inspecting the assembly of the original vectorization and the improved vec-
torization, it is found that the total amount of assembly instructions in the
inner loop decreases from 112 to 105 with the optimization, the instructions
that contain a memory load or store µop decreases significantly from 53 to
45. Indicating that there should atleast be some kind of performance difference
measurable concerning memory behavior. This inspection of the assembly also
resulted in the discovery that the two divisions in the original vectorization were
already optimized away to a single RCPPS (computes the reciprocal) and two
multiplies.

Many performance counters were measured using likwid while executing the
collide kernel for the 80 × 200 and 1080 × 1920 resolutions (recall Table 11).
Only the group of resulting metrics that showed any novel results was caching,
these metrics are shown in Table 12. Two metrics stand out with a significant
difference between the two implementations. Firstly the L3 miss ratio increases
slightly with the improved vectorization for both resolutions, while the stall rate
(the % of cycles that are wasted because of waiting for loads) decreases with
6.8% for the small resolution but increases by 2.3% for the larger resolution.
Indicating that the changes that were observed in the assembly seem to only

24

80×200 original 80×200 improved 1080×1920 original 1080×1920 improved
L2 rate 0.234 0.238 0.338 0.34
L2 miss ratio 0.214 0.212 0.199 0.198
L3 miss ratio 0.015 0.042 0.129 0.16
Stall rate (caused by loads) 28.2% 21.4% 48.5% 50.8%

Table 12: Measured metrics (calculated from measured performance counters)
for the 80× 200 and 1080× 1920 resolutions with the original vectorization and
the improved vectorization.

positively affect the small grid sizes. Unfortunately the performance counters
did not give any insight to why this only occurs with the small grid.

It is hypothesized that when the grid does not fit into L3, the new ordering of
computations and the long latencies on the fewer memory loads, lead to execu-
tions where more data dependencies occur than with the original vectorization.
Thus still leading to worse performance with larger grid sizes.

6.3 Parallelization of the collide kernel

As the improved vectorization iteration gave a slight slowdown with the two
larger resolutions, the original vectorization will be used in subsequent itera-
tions. To see which kernel should be the focus for this performance iteration,
kernel profiling is performed on this vectorized implementation. In Figure 9 it is
clearly shown that although the dominance of the collide kernel has decreased,
it is by a significant margin still dominant. As there is no realistic path towards
optimizing the inner-loop, the next logical step is to parallelize the loop of the
collide kernel.

6.3.1 Speedup prediction with parallel collide kernel

To limit complexity the range of T will be limited to T = {2, 4, 8} throughout
the report when analyzing parallelism.

The analytical model of the collide kernel in Equation 9, computes the total
latency of the kernel by calculating the amount of inner loop iterations and mul-
tiplying that by the latency of a single inner loop iteration. When parallelized
with T threads, these H ·W amount of inner loop iterations can be divided over
the threads and executed in parallel, thus giving the predicted speedup of ×T
and the analytical model formula:

Tcollide(H,W) =
H ·W · Tcollide,(y,x)

T
(19)

However this prediction is quite naive as this does not take into account that
the vectorized version is most likely still memory-bound, as no explicit memory
optimizations were made. Therefore roofline models will be generated and used
to predict the parallel speedup.

25

Figure 9: Kernel profiling of the vectorized collide kernel, showing the percent-
age of the average Tframe that each kernel takes up for each configuration. For
the 80x200, 1080x1920 and 3840x2160 grid size 7.5E4, 500 and 100 iterations
were used respectively.

To generate these roofline models without having knowledge about the code,
it has to be assumed that the AI does not change when moving towards the
parallel implementation (i.e. using the measured AI from the vectorized imple-
mentation in the parallel roofline models). As with this assumption the other
factors in the model (i.e. maximum theoretical bandwidths and maximum the-
oretical GFLOP/s) can be calculated from the amount of threads. Using this
assumption and the known GFLOP/s numbers for the vectorized implementa-
tion, the roofline models were generated for all threads counts T , shown under
Appendix 8.3 in Figure 13. Here we see that once more that only the small
resolution is bound by L3 cache (the purple DRAM dot is completely outside of
the graph as the whole grid fits into L3 cache), while the two larger resolutions
are bound by DRAM. Using these roofline models the predicted speedups can
be calculated for the collide kernel, shown in Table 13.

threads → 2 4 8
80x200 1.49 2.99 5.97
1080x1920 2.53 4.51 4.84
3840x2160 2.56 4.56 4.89

Table 13: The predicted speedup of the parallelized collide kernel with respect
to the vectorized collide kernel for all considered thread count grid dimension
combinations. Note that each prediction is independent of the boundary density
setting.

26

1 #pragma omp parallel for schedule(static) \

2 firstprivate(H, W, grid, rho_array, u_array)

3 for (size_t y = 0; y < H; y++) {

4 for (size_t x = 0; x < W; x+=8) {

5 // Vectorized FLOPs ...

Listing 6: Parallelized version of the collide kernel loop

6.3.2 Implementation of the parallel collide kernel

OpenMP was used to parallelize the collide kernel, as this kernel is a on a high
level a simple loop that can be divided over threads.

To implement the parallelization of the collide kernel, OpenMP was em-
ployed with a parallel for pragma as can be seen in Listing 6. The two loops are
not collapsed as this would pose problems for the vectorization and not give any
gains with the already high granularity of a single row. The scheduling is simply
static as the workload of each row is always the same. There is no if -clause on
this parallel for as it was empirically determined that even with the smallest
resolution, a speedup was still achieved going from single-threaded to parallel
with 2 threads.

6.3.3 Benchmarking the parallel collide kernel

Running the benchmarking on the parallel collide kernel we find the collide
speedups shown in Figure 10, the overall speedups shown in Table 14 and the
kernel profiling found in Figure 11. The collide speedups are compared with
those predicted in Section 6.3.1. This figure shows that almost completely across
the board, the implementation does not come close to reaching the predicted
speedups.

Figure 10: The speedup of the parallelized collide kernel with respect to the
vectorized collide kernel compared to the prediction (all configurations used
the line object density). Blue above brown means underestimation and orange
above brown means overestimation.

27

line medium dense
80x200 5.52 5.11 4.78
1080x1920 6.79 6.21 5.15
3840x2160 6.64 6.10 5.18

Table 14: The speedup of the average Tframe of the parallelized collide kernel
with respect to the reference implementation with T = 8 (highest performing
thread count). Note that 7.5E4, 500 and 100 iterations were used for the 80x200,
1080x1920 and 3840x2160 resolution respectively.

Figure 11: Kernel profiling of the parallel implementation compared to the
vectorized implementation. Note that an average latency is used for each kernel
across 7.5E4 (80x200), 500 (1080x1920) and 100 (3840x2160) iterations. The
steadyflow kernel is omitted because it is not significant.

6.3.4 Performance analysis of the parallel collide kernel

As this performance difference between the speedup predictions from the roofline
models and the realized speedup is quite large, analysis will be performed to
determine the cause of this difference.

In the predictions it is assumed that the AI of the parallel implementation
is the same AI across all threads as the AI in the vectorized implementation.
Because of this the first avenue pursued was analyzing the memory behavior.
It was hypothesized that the fact that the main thread modifies the complete
grid in the stream kernel, storing these results in its local cache and invalidating
local caches of the other cores, leads to the OpenMP threads having a completely
empty cache when they are able to execute the collide kernel on their portion

28

of the grid again.
However when measuring the various memory and caching related perfor-

mance counters, no significant differences between the vectorized implementa-
tion and parallel version were found. Measuring the caching behavior for the
parallel implementation with Intel Advisor (with adjusted FLOP counts as Intel
Advisor measures these wrong), we find a very slight decrease < 0.05 in all AI’s
except for the 200×80’s L3 AI that increases 8-fold (only tested with 8 threads).
This 8-fold increase in L3 AI for the small resolution is thought to occur because
of the 8× increase in total L1 and L2 cache size, leading to fewer L3 reads when
the grid fits better into these smaller caches. However these findings do not get
us any closer to the cause of the performance discrepancy and reject our earlier
hypothesis.

When the clock performance counters were measured, the clock frequencies
were found to differ vastly per core throughout the various thread counts and
resolutions. It was found that core 0 (the core where the main thread with the
stream and bounceback kernels execute) in all configurations runs at a higher
clock frequency than the other cores. In some cases core 0 has a clock speed
twice that of the other cores.

Why this clock frequency imbalance occurs is easy to trace, the OpenMP
threads suspend after they are done with their collide kernel workload and their
respective cores clock down to a low clock frequency (likely being the minimum
clock frequency of 1.2Ghz on the DAS-5 node) while core 0 stays active working
on the other kernels. As a result its clock frequency remains high (between
the base frequency and maximum turbo frequency depending on the amount
of cores in use). Because the collide kernel only takes up a small fraction of
a second there isn’t enough computation time to clock up the cores that are
suspended while core 0 executes the other kernels. Manually timing how long
each thread spends inside of the compute section of the collide kernel confirms
this theory, as the cores with the low clock frequency take significantly longer
to complete their work.

Because the roofline models used for the speedup predictions, assume that
all the threads run at their maximum clock frequency (depends on the amount
of cores in use), the observed prediction errors seem plausible. Unfortunately
restrictions on the DAS-5 do not allow pinning the CPU clock frequencies at
their maximum clock frequency to test whether this would make the predictions
line up with the achieved performance.

7 Conclusion

In this report the optimization process of a 2D Lattice Boltzmann Fluid simu-
lation has been documented. A C port of a Python implementation served as
a starting point for this process. After kernel profiling it was discovered that
the collide kernel was dominant in the latency of a single fluid state update
(Tframe). Therefore the subsequent steps focused on this kernel. The first per-
formance iteration vectorized the collide kernel with Intel Intrinsics, after which

29

the second iteration attempted at further improving this vectorization through
analysis, but did not improve upon original vectorization. The third and final
performance iteration parallelized the collide kernel using OpenMP. These steps
combined yielded a speedup between 5.11 and 5.18 of the average Tframe with
respect to the reference implementation, with the value of Tframe being heavily
reliant on the parameter configuration used. This is our current answer to the
research question:

How fast can a single time-step in the 2D fluid dynamics simulation
be performed?

Achieving a better performance is feasible, this is clearly shown by the dis-
crepancy between the predicted and realized parallel speedups as well as other
possible improvements which will be discussed in section 7.2.

7.1 Lessons learned

During this performance engineering process several lessons were learned. Firstly
the results from tools, such as generated models, benchmarks results and per-
formed assembly analysis, should not be taken be taken as complete truths at
face value.

For instance we found that Intel Advisor reported inaccurate DRAM band-
width limits and that some performance counters (especially when needing to
resort to using perf to measure these when using the DAS-5) reported numbers
that were flat out wrong when manually verified. Secondly we struggled with
keeping different compiler versions and compiler flags in check.

The DAS-5 provides GCC 9.3, one student had GCC 11.1 on their machine
and another student had GCC 5.4 on their machine. We found that to keep
analysis (especially when using the generated assembly) consistent, comparing
results between compiler versions lead to misleading results.

Changing compiler flags in a certain iteration also turned out to be danger-
ous as forgetting to change them back invalidated results on that iteration, as
comparison with an earlier iteration would not be fair anymore.

Lastly we experienced that not pinning threads on specific cores lead to anal-
ysis and benchmarking results that are misleading. Due to the fact that our
problem is very memory-bound, threads switching cores leads to performance
penalties in caching that are very visible in the results. After this was deter-
mined to be the cause of some very unexpected results, all benchmarks and
analyses were re-performed using pinning.

These factors combined lead to a misprediction of roughly −50% instead of
roughly [−7,−3]% in Section 6.1.3 with the first vectorization implementation.

7.2 Future work

From the kernel profiling of the last performance iteration, it was concluded
that the stream kernel is now the dominant factor in all configurations. For
the dense boundary setting, the bounceback kernel is only a few percents less

30

dominant than the stream kernel. Although we did not have the opportunity to
optimize these kernels due to time constraints, we did have several ideas about
further performance improvements. These will be shortly described here.

The stream kernel simply moves all molecules into their respective direction,
with several loops that perform memcpy()’s. However we think that this kernel
can be practically eliminated by instead of moving the molecules inside of the
grid, keeping track off an offset. Take for example the down direction. Instead
of copying all the molecules from (y, x) to (y+1, x), the point that is seen as the
start of the grid (yup, xup) is changed to (yup + 1, xup) in each iteration. When
other kernels then want the molecules in the up direction at logical index (y, x)
they look in the buffer at position (yup + y, xup + x).

The bounceback kernel could be optimized by instead of having a H ×W
object grid that denotes whether on a given (y, x) an object is present, a vector
of (y, x) indices could be used wherein the presence of element (y, x) denotes
that on this position an object grid is present.

The performance of the current collide parallel implementation could be
improved by pinning the CPU clock frequency. Further improvements could
be gained by parallelizing the stream kernel as well as the bounceback kernel.
Parallelizing the other kernels too would prevent the down clocking of the non-
thread 0 cores, caused by these cores having to suspend while waiting for thread
0 to complete the steady flow, stream and bounceback kernels. Removing the
need for pinning the CPU clock frequency, while still providing the collide kernel
with more performance.

8 Appendix

8.1 Barrier lattice cell ratio’s for line/medium/dense

ratline(H,W) =
b3H/10c b7H/10c

HW
(20)

ratmed(H,W) =

⌈
1
30 (H − 2)

⌉ (
2W − 70 + 5

⌈
1
32 (W − 35)

⌉)
HW

(21)

ratdense(H,W) =

⌈
1
10 (H − 11)

⌉ (
2W − 70 + 5

⌈
1
8 (W − 35)

⌉)
HW

(22)

8.2 Analytical model reference implementation

Trollrow,bytecpy = 0.088720 Trollcoll,loopit = 0.407201 Tbounce,mem = 12.9577
Tbounce,cond = 0.899223 Tcollide,(y,x) = 20.028574 Tsteadyflow,y = 64.750737

Table 15: The calibrated values of the reference analytical model in ns.

31

Figure 12: A figure generated by lmbench for a DAS5-node from which the
memory load latency of each memory type can be derived. The specific values
are as follows: LatL1 = 1.25ns, LatL2 = 3.7ns, LatL3 = 14ns and Latmain =
94ns. They were obtained by determining the height of each of the 4 plateau’s
in the graph with a stride of 1024 bytes.

32

8.3 Parallel roofline prediction models

Figure 13: Parallel roofline prediction models using all values of T with the
corrected AI’s of the vectorized implementation.

References

[1] Cyrus K. Aidun and Jonathan R. Clausen. Lattice-boltzmann method for com-
plex flows. Annual Review of Fluid Mechanics, 42:439–472, 2010. doi:10.1146/

annurev-fluid-121108-145519.

33

https://doi.org/10.1146/annurev-fluid-121108-145519
https://doi.org/10.1146/annurev-fluid-121108-145519

[2] Tuomas Koskela, Zakhar Matveev, Charlene Yang, Adetokunbo Adedoyin, Roman
Belenov, Philippe Thierry, Zhengji Zhao, Rahulkumar Gayatri, Hongzhang Shan,
Leonid Oliker, et al. A novel multi-level integrated roofline model approach for
performance characterization. In International Conference on High Performance
Computing, pages 226–245. Springer, 2018.

[3] Timm Kruger, Halim Kusumaatmaja, Alexandr Kuzmin, Orest Shardt, Silva
Goncalo, and Erlend M. Viggen. The lattice boltzmann method, principles and
practice, volume 10. 2017. arXiv:arXiv:1011.1669v3.

[4] Dan Schroeder. Fluid dynamics simulation. URL: https://physics.weber.edu/
schroeder/fluids/.

34

http://arxiv.org/abs/arXiv:1011.1669v3
https://physics.weber.edu/schroeder/fluids/
https://physics.weber.edu/schroeder/fluids/

	Introduction
	Lattice Boltzmann Algorithm
	The DS2Q9 lattice
	Probability of vi
	A state update
	Stream
	Bounceback
	Collide
	Steady flow

	C reference implementation
	Data layout
	Validation

	Research question & experimental setup
	Inputs & parameters
	Performance metrics

	Reference performance analysis
	Reference implementation Analytical model
	Stream kernel
	Bounce back kernel
	Collide kernel
	Steady flow
	Complete model
	Calibration
	Verification

	Kernel profiling

	Performance improvement iterations
	Vectorization of the collide kernel
	Speedup prediction with vectorized collide kernel
	Implementation of vectorized collide kernel
	Benchmarking vectorized collide kernel
	Performance analysis vectorized collide kernel

	Improvement upon the vectorized collide kernel
	Benchmarking of the improved vectorized collide kernel
	Performance analysis improved vectorization

	Parallelization of the collide kernel
	Speedup prediction with parallel collide kernel
	Implementation of the parallel collide kernel
	Benchmarking the parallel collide kernel
	Performance analysis of the parallel collide kernel

	Conclusion
	Lessons learned
	Future work

	Appendix
	Barrier lattice cell ratio's for line/medium/dense
	Analytical model reference implementation
	Parallel roofline prediction models

